Resultant Force

Two forces that act in the same direction

Two forces that act in opposite directions

Two forces parallel to one another

Two forces in different directions

Addition of Force

Law of Cosines

$$R^{2} = F_{1}^{2} + F_{2}^{2} + 2 F_{1}F_{2}\cos\theta$$
$$R^{2} = F_{1}^{2} + F_{2}^{2} - 2F_{1}F_{2}\cos\beta$$

Law of Sines

$$\frac{R}{\sin\beta} = \frac{F_1}{\sin\gamma} = \frac{F_2}{\sin\alpha}$$

Or

 $\frac{\sin\beta}{R} = \frac{\sin\gamma}{F_1} = \frac{\sin\alpha}{F_2}$

Ex: The two force $P^{>}$ and $Q^{>}$ at on bolt A as shown in the figure bellow. Determine their resultant? Q 60 N 40 N 200 **Analytic Method** A $R^2 = 40^2 + 60^2 - 2.40.60 \ Cos(20 + 135)$ =97.7 N Sin 155 $Sin \alpha$ 60 97.7 $\sin \alpha = 0.259$, then $\alpha = 15^{\circ}$ $R^{>} = 97.7$ **Z** 35⁰ (N) 450 200

A barge is pulled by two tugboats. If the resultant of the forces exerted by the tugboats is a 5000-lb force directed along the axis of the barge, determine (a) the tension in each of the ropes knowing that $\alpha = 45^{\circ}$,

SOLUTION

 $\frac{T_1}{\sin 45^\circ} = \frac{T_2}{\sin 30^\circ} = \frac{5000 \text{ lb}}{\sin 105^\circ}$

5000 lb B 0 T₂ T₂ T₁ 5000 lb T₁

 $T_1 = 3660 \text{ lb}$ $T_2 = 2590 \text{ lb}$

GIVEN: RESULTANT R OF I, AND I, MUST BE VERTICAL AND Tz = 1000 16 FIND (a) T, : (b) R

 T_{1} T_{1} T_{1} T_{1} T_{2} T_{1} T_{2} T_{2} T_{2} T_{2} T_{1} T_{2} T_{2

(d) SOLVING FOR T₁: $T_1 = (1000 \text{ lb}) \frac{5in65}{5in75} = 938.28 \text{ lb}, T_1 = 938 \text{ lb}$ (b) SOLVING FOR R: $R = (1000 \text{ lb}) \frac{5in 40^\circ}{5in 75^\circ} = 665.46 \text{ lb}, R = 665 \text{ lb}$

Rectangular components of a force

$$F = \sqrt{F_x^2 + F_y^2}$$

$$Tan \theta = \frac{F_y}{F_x}$$

$$F_y$$

$$F_y$$

$$F_y$$

$$F_x$$

Two forces F₁, F₂ of 50N and 60N respectively. Find resultant?

- $F_{1x} = F_1 \cos 45^\circ$ $F_{1y} = F_1 \sin 45^{\circ}$ $F_{2x} = F_2$ $F_{2v} = 0$
- $R_x = F_1 \cos 45^\circ + F_2$
- $R_{v} = 95N$
- $R_v = F_1 \sin 45^\circ$
- $R_{v} = 35N$
- $R = \sqrt{95^2 + 35^2} = 100 N$
 - $\theta = 20^{\circ}$

Ex: the forces F_1 , F_2 and F_3 all which act on point A of the bracket, are specified in three different ways. Determine the x and y scalar components and the resultant R.

 $F_{1x} = 600 \cos 35^o = 491 N$ $F_{1v} = 600 \sin 35^o = 344 N$ $F_{2x} = -500 \left(\frac{4}{5}\right) = -400 N$ $F_{2y} = 500 \left(\frac{3}{5}\right) = 300 N$ $Tan \alpha = \left(\frac{0.2}{0.4}\right) \rightarrow \alpha = 26.6^{\circ}$ $F_{3x} = 800 \sin 26.6^{\circ} = 358 N$ $F_{3\nu} = -800 \cos 26.6^{\circ} = -716 N$ $R_{\chi} = 491 - 400 + 358 = 449 N$ $R_{v} = 344 + 300 - 716 = -72 N$ $R = \sqrt{449^2 + (-72)^2} = 454.74 N$

Determine the x and y components of each of the forces Determine the resultant of the three forces

SOLUTION

The components of the forces

Force	x comp.	y comp.
40	-30.6	-25.7
60	30	-51.96
80	72.5	33.8
	$R_r = 71.9$	$R_v = -43.86$

 $R = 84.2 \leq 31.4^{\circ}$

Inclined Coordinates

اذا كان هناك مستقيمان بينهما زاوية فالعمودان عليهما بينهما نفس الزاوية