Resultant Force

Two forces that act in the same direction

Two forces that act in opposite directions

Two forces parallel to one another

Two forces in different directions

Addition of Force

Law of Cosines
$R^{2}=F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta$
$R^{2}=F_{1}^{2}+F_{2}^{2}-2 F_{1} F_{2} \cos \beta$
Law of Sines
$\frac{R}{\operatorname{Sin} \beta}=\frac{F_{1}}{\operatorname{Sin} \gamma}=\frac{F_{2}}{\operatorname{Sin} \alpha}$
Or
$\frac{\operatorname{Sin} \beta}{R}=\frac{\operatorname{Sin} \gamma}{F_{1}}=\frac{\operatorname{Sin} \alpha}{F_{2}}$

Ex: The two force $\boldsymbol{P}^{>}$and $\boldsymbol{Q}^{>}$at on bolt A as shown in the figure bellow. Determine their resultant?

AnalyticMethod

$$
\begin{aligned}
R^{2} & =40^{2}+60^{2}-2.40 .60 \operatorname{Cos}(20+135) \\
& =97.7 \mathrm{~N}
\end{aligned}
$$

$\frac{\operatorname{Sin} \alpha}{60}=\frac{\operatorname{Sin} 155}{97.7}$
$\operatorname{Sin} \alpha=0.259$, then $\alpha=15^{\circ}$

$$
R^{>}=97.7 \nearrow 35^{\circ}(\mathrm{N})
$$

A barge is pulled by two tugboats. If the resultant of the forces exerted by the tugboats is a $5000-\mathrm{lb}$ force directed along the axis of the barge, determine (a) the tension in each of the ropes knowing that $\alpha=45^{\circ}$,

SOLUTION

$$
\frac{T_{1}}{\sin 45^{\circ}}=\frac{T_{2}}{\sin 30^{\circ}}=\frac{5000 \mathrm{lb}}{\sin 105^{\circ}}
$$

$$
T_{1}=3660 \mathrm{lb} \quad T_{2}=2590 \mathrm{lb}
$$

Given:

Resultant R OF I/ and I_{2} must be vertical and $T_{z}=1000 \mathrm{lb}$
FIND:
(a) T_{1}
(b) R
triangle rule and law OF SINES:

$$
\frac{T_{1}}{\sin 65^{\circ}}=\frac{10001 b}{\sin 75^{\circ}}=\frac{R}{\sin 40^{\circ}}
$$

(a) SOLVING FOR T_{1} :

$$
T_{1}=(1000 \mathrm{lb}) \frac{\sin 65^{\circ}}{\sin 75^{\circ}}=938.28 \mathrm{~B}, T_{1}=938 \mathrm{lb}
$$

(b) SOLVING FOR R :

$$
R=(1000 \mathrm{Bb}) \frac{\sin 40^{\circ}}{\sin 75^{\circ}}=665.46 \mathrm{~B}, \quad R=665 \mathrm{~B}
$$

Rectangular components of a force

$$
F=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

$$
\operatorname{Tan} \theta=\frac{F_{y}}{F_{x}}
$$

 the resultant will be :

$$
R_{x}=\sum F_{x} \quad R_{y}=\sum F_{y}
$$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}}
$$

$$
\operatorname{Tan} \theta=\frac{R_{y}}{R_{x}}
$$

Two forces F_{1}, F_{2} of 50 N and 60 N respectively. Find resultant?

$$
\begin{aligned}
& \mathrm{F}_{1 \mathrm{x}}=\mathrm{F}_{1} \cos 45^{\circ} \\
& \mathrm{F}_{1 \mathrm{y}}=\mathrm{F}_{1} \sin 45^{\circ} \\
& \mathrm{F}_{2 \mathrm{x}}=\mathrm{F}_{2} \\
& \mathrm{~F}_{2 \mathrm{y}}=0 \\
& \mathrm{R}_{\mathrm{x}}=\mathrm{F}_{1} \cos 45^{\circ}+\mathrm{F}_{2} \\
& \mathrm{R}_{\mathrm{x}}=95 \mathrm{~N} \\
& \mathrm{R}_{\mathrm{y}}=\mathrm{F}_{1} \sin 45^{\circ} \\
& \mathrm{R}_{\mathrm{y}}=\mathbf{3 5 N} \\
& \mathrm{R}=\sqrt{ }=25^{2}+35^{2}=100 \mathrm{~N} \\
& \theta=20^{\circ}
\end{aligned}
$$

Ex: the forces F_{1}, F_{2} and F_{3} all which act on point A of the bracket, are specified in three different ways. Determine the x and y scalar components and the resultant R.

$$
\begin{gathered}
F_{1 x}=600 \cos 35^{\circ}=491 \mathrm{~N} \\
F_{1 y}=600 \sin 35^{\circ}=344 \mathrm{~N} \\
F_{2 x}=-500\left(\frac{4}{5}\right)=-400 \mathrm{~N} \\
F_{2 y}=500\left(\frac{3}{5}\right)=300 \mathrm{~N} \\
\text { Tan } \alpha=\left(\frac{0.2}{0.4}\right) \rightarrow \quad \alpha=26.6^{\circ} \\
F_{3 x}=800 \sin 26.6^{\circ}=358 \mathrm{~N} \\
F_{3 y}=-800 \cos 26.6^{\circ}=-716 \mathrm{~N} \\
R_{x}=491-400+358=449 \mathrm{~N} \\
R_{y}=344+300-716=-72 \mathrm{~N} \\
R=\sqrt{449^{2}+(-72)^{2}}=454.74 \mathrm{~N}
\end{gathered}
$$

Determine the x and y components of each of the forces Determine the resultant of the three forces.

SOLUTION

The components of the forces

Force	x comp.	y comp.
40	-30.6	-25.7
60	30	-51.96
80	72.5	33.8
	$R_{s}=71.9$	$R_{v}=-43.86$

$$
\begin{gathered}
\mathbf{R}=R_{x} \mathbf{i}+R_{y} \mathbf{j} \\
=(71.9) \mathbf{i}-(43.86) \mathbf{j} \\
\tan c z=\frac{43.86}{71.9} \\
\alpha=31.38^{\circ} \\
R=\sqrt{(71.9)^{2}+(-43.86)^{2}} \\
= \\
84.23
\end{gathered}
$$

$$
\mathbf{R}=84.2 \quad<31.4^{\circ}
$$

Inclined Coordinates

Ex : Find the components of the weight W along and perpendicular the incline that shown in figure bellow:

$F_{y}=W \operatorname{Cos} \alpha$
اذا كان هناك مستُّشمان بينهـا زاوية فالعقودان عليهـا بينهـا نفس الز اوية

